徐芳 , 刘晶红 , 孙辉 , 等 . 光学遥感图像海面船舶目标检测技术进展 [J]. 光学 精密工程 , 2021 , 29 ( 4 ): 916 - 931 . doi: 10.37188/OPE.2020.0419 http://dx.doi.org/10.37188/OPE.2020.0419
XU F , LIU J H , SUN H , et al . Research progress on vessel detection using optical remote sensing image [J]. Opt. Precision Eng. , 2021 , 29 ( 4 ): 916 - 931 . (in Chinese) . doi: 10.37188/OPE.2020.0419 http://dx.doi.org/10.37188/OPE.2020.0419
王彦情 , 马雷 , 田原 . 光学遥感图像舰船目标检测与识别综述 [J]. 自动化学报 , 2011 , 37 ( 9 ): 1029 - 1039 . doi: 10.3724/SP.J.1004.2011.01029 http://dx.doi.org/10.3724/SP.J.1004.2011.01029
WANG Y Q , MA L , TIAN Y . Overview of ship target detection and recognition in optical remote sensing images [J]. Acta Automatica Sinica , 2011 , 37 ( 9 ): 1029 - 1039 . (in Chinese) . doi: 10.3724/SP.J.1004.2011.01029 http://dx.doi.org/10.3724/SP.J.1004.2011.01029
LOWE D G . Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision , 2004 , 60 ( 2 ): 91 - 110 . doi: 10.1023/b:visi.0000029664.99615.94 http://dx.doi.org/10.1023/b:visi.0000029664.99615.94
DALAL N , TRIGGS B . Histograms of oriented gradients for human detection [C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). 20-25,2005 , San Diego, CA, USA. IEEE , 2005 : 886 - 893 . doi: 10.1109/cvpr.2005.4 http://dx.doi.org/10.1109/cvpr.2005.4
范丽丽 , 赵宏伟 , 赵浩宇 , 等 . 基于深度卷积神经网络的目标检测研究综述 [J]. 光学 精密工程 , 2020 , 28 ( 5 ): 1152 - 1164 .
FAN L L , ZHAO H W , ZHAO H Y , et al . Survey of target detection based on deep convolutional neural networks [J]. Opt. Precision Eng. , 2020 , 28 ( 5 ): 1152 - 1164 . (in Chinese)
GIRSHICK R , DONAHUE J , DARRELL T , et al . Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition . New York : ACM , 2014 : 580 - 587 . doi: 10.1109/cvpr.2014.81 http://dx.doi.org/10.1109/cvpr.2014.81
EVERINGHAM M , ESLAMI S M , GOOL L , et al . The pascal visual object classes challenge: a retrospective [J]. International Journal of Computer Vision , 2015 , 111 ( 1 ): 98 - 136 . doi: 10.1007/s11263-014-0733-5 http://dx.doi.org/10.1007/s11263-014-0733-5
HE K M , ZHANG X Y , REN S Q , et al . Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 9 ): 1904 - 1916 . doi: 10.1109/tpami.2015.2389824 http://dx.doi.org/10.1109/tpami.2015.2389824
EVERINGHAM M , GOOL L , WILLIAMS C K , et al . The pascal visual object classes (VOC) challenge [J]. International Journal of Computer Vision , 2010 , 88 ( 2 ): 303 - 338 . doi: 10.1007/s11263-009-0275-4 http://dx.doi.org/10.1007/s11263-009-0275-4
GIRSHICK R . Fast R-CNN [C]. 2015 IEEE International Conference on Computer Vision (ICCV). 7-13,2015 , Santiago, Chile. IEEE , 2016 : 1440 - 1448 . doi: 10.1109/iccv.2015.169 http://dx.doi.org/10.1109/iccv.2015.169
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [EB/OL]. 2014 : arXiv : 1409 . 1556 . https://arxiv.org/abs/1409.1556 https://arxiv.org/abs/1409.1556 .
REN S Q , HE K M , GIRSHICK R , et al . Faster R-CNN: towards real-time object detection with region proposal networks [C]. Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1. 7-12, 2015 , Montreal, Canada. New York : ACM , 2015 : 91 - 99 .
REDMON J , DIVVALA S , GIRSHICK R , et al . You only look once: unified, real-time object detection [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 27-30,2016 , Las Vegas, NV, USA. IEEE , 2016 : 779 - 788 . doi: 10.1109/cvpr.2016.91 http://dx.doi.org/10.1109/cvpr.2016.91
LIU W , ANGUELOV D , ERHAN D , et al . SSD : Single Shot MultiBox Detector [M]. Computer Vision - ECCV 2016 . Cham : Springer International Publishing , 2016 : 21 - 37 . doi: 10.1007/978-3-319-46448-0_2 http://dx.doi.org/10.1007/978-3-319-46448-0_2
REDMON J , FARHADI A . YOLO9000: better, faster, stronger [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 21-26, 2017 , Honolulu, HI, USA. IEEE , 2017 : 6517 - 6525 . doi: 10.1109/cvpr.2017.690 http://dx.doi.org/10.1109/cvpr.2017.690
REDMON J , FARHADI A . YOLOv3: an incremental improvement [EB/OL]. 2018 : arXiv : 1804 . 02767 . https://arxiv.org/abs/1804.02767 https://arxiv.org/abs/1804.02767 . doi: 10.1109/cvpr.2017.690 http://dx.doi.org/10.1109/cvpr.2017.690
LIN T Y , MAIRE M , BELONGIE S , et al . Microsoft COCO : Common Objects in Context [M]. Computer Vision-ECCV 2014 . Cham : Springer International Publishing , 2014 : 740 - 755 . doi: 10.1007/978-3-319-10602-1_48 http://dx.doi.org/10.1007/978-3-319-10602-1_48
BOCHKOVSKIY A , WANG C Y , LIAO H Y M . YOLOv4: optimal speed and accuracy of object detection [EB/OL]. 2020 : arXiv : 2004 . 10934 . https://arxiv.org/abs/2004.10934 https://arxiv.org/abs/2004.10934 .
ULTRALYTICS . YOLOv5 [EB/OL]. ( 2020-06-03 ) [ 2022-12-01 ]. https://github.com/ultralytics/yolov5 https://github.com/ultralytics/yolov5 . doi: 10.1117/1.jei.31.3.033033 http://dx.doi.org/10.1117/1.jei.31.3.033033
LAW H , DENG J . CornerNet : Detecting Objects as Paired Keypoints [M]. Computer Vision - ECCV 2018 . Cham : Springer International Publishing , 2018 : 765 - 781 . doi: 10.1007/978-3-030-01264-9_45 http://dx.doi.org/10.1007/978-3-030-01264-9_45
ZHOU X , WANG D , KRÄHENBÜHL P . Objects as points [EB/OL]. 2019 : arXiv : 1904 . 07850 . https://arxiv.org/abs/1904.07850 https://arxiv.org/abs/1904.07850 . doi: 10.1090/mbk/121/79 http://dx.doi.org/10.1090/mbk/121/79
ZHU C C , HE Y H , SAVVIDES M . Feature selective anchor-free module for single-shot object detection [C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 15-20, 2019 , Long Beach, CA, USA. IEEE , 2020 : 840 - 849 . doi: 10.1109/cvpr.2019.00093 http://dx.doi.org/10.1109/cvpr.2019.00093
TIAN Z , SHEN C H , CHEN H , et al . FCOS: fully convolutional one-stage object detection [C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 27-2, 2019 , Seoul, Korea (South). IEEE , 2020 : 9626 - 9635 . doi: 10.1109/iccv.2019.00972 http://dx.doi.org/10.1109/iccv.2019.00972
杨阳 . 基于深度学习的遥感图像舰船目标检测与分类识别 [D]. 武汉 : 华中科技大学 , 2019 .
YANG Y . Ship Target Detection and Classification in Remote Sensing Images Based on Deep Learning [D]. Wuhan : Huazhong University of Science and Technology , 2019 . (in Chinese)
NINA W , CONDORI W , MACHACA V , et al . Small Ship Detection on Optical Satellite Imagery with YOLO and YOLT [M]. Advances in Intelligent Systems and Computing . Cham : Springer International Publishing , 2020 : 664 - 677 . doi: 10.1007/978-3-030-39442-4_49 http://dx.doi.org/10.1007/978-3-030-39442-4_49
王楠 . 基于深度学习的舰船检测识别 [D]. 哈尔滨 : 哈尔滨工业大学 , 2019 .
WANG N . Ship Detection and Recognition Based on Deep Learning [D]. Harbin : Harbin Institute of Technology , 2019 . (in Chinese)
AL-SAAD M , ABURAED N , PANTHAKKAN A , et al . Airbus ship detection from satellite imagery using frequency domain learning [C]. Proc SPIE 11862, Image and Signal Processing for Remote Sensing XXVII , 2021 , 11862 : 279 - 285 . doi: 10.1117/12.2600168 http://dx.doi.org/10.1117/12.2600168
LI Q P , MOU L C , LIU Q J , et al . HSF-net: multiscale deep feature embedding for ship detection in optical remote sensing imagery [J]. IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 12 ): 7147 - 7161 . doi: 10.1109/tgrs.2018.2848901 http://dx.doi.org/10.1109/tgrs.2018.2848901
LIU S , KONG W , CHEN X , et al . Multi-scale ship detection algorithm based on a lightweight neural network for spaceborne SAR images [J]. Remote Sensing , 2022 , 14 ( 5 ): 1149 . doi: 10.3390/rs14051149 http://dx.doi.org/10.3390/rs14051149
HUANG G , LIU Z , VAN DER MAATEN L , et al . Densely connected convolutional networks [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 21-26,2017 , Honolulu, HI, USA. IEEE , 2017 : 2261 - 2269 . doi: 10.1109/cvpr.2017.243 http://dx.doi.org/10.1109/cvpr.2017.243
JIAO J , ZHANG Y , SUN H , et al . A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection [J]. IEEE Access , 2018 , 6 : 20881 - 20892 . doi: 10.1109/access.2018.2825376 http://dx.doi.org/10.1109/access.2018.2825376
TIAN L , CAO Y , HE B K , et al . Image enhancement driven by object characteristics and dense feature reuse network for ship target detection in remote sensing imagery [J]. Remote Sensing , 2021 , 13 ( 7 ): 1327 . doi: 10.3390/rs13071327 http://dx.doi.org/10.3390/rs13071327
LIN T Y , DOLLÁR P , GIRSHICK R , et al . Feature pyramid networks for object detection [C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 21-26,2017 , Honolulu, HI, USA. IEEE , 2017 : 936 - 944 . doi: 10.1109/cvpr.2017.106 http://dx.doi.org/10.1109/cvpr.2017.106
LIU S , QI L , QIN H F , et al . Path aggregation network for instance segmentation [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 18-23,2018 , Salt Lake City, UT, USA . IEEE , 2018 : 8759 - 8768 . doi: 10.1109/cvpr.2018.00913 http://dx.doi.org/10.1109/cvpr.2018.00913
LIU S , HUANG D , WANG Y . Learning spatial fusion for single-shot object detection [EB/OL]. 2019 : arXiv : 1911 . 09516 . https://arxiv.org/abs/1911.09516 https://arxiv.org/abs/1911.09516 .
CHEN L C , PAPANDREOU G , KOKKINOS I , et al . DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2018 , 40 ( 4 ): 834 - 848 . doi: 10.1109/tpami.2017.2699184 http://dx.doi.org/10.1109/tpami.2017.2699184
ZHANG T W , ZHANG X L , KE X . Quad-FPN: a novel quad feature pyramid network for SAR ship detection [J]. Remote Sensing , 2021 , 13 ( 14 ): 2771 . doi: 10.3390/rs13142771 http://dx.doi.org/10.3390/rs13142771
QING Y H , LIU W Y , FENG L Y , et al . Improved YOLO network for free-angle remote sensing target detection [J]. Remote Sensing , 2021 , 13 ( 11 ): 2171 . doi: 10.3390/rs13112171 http://dx.doi.org/10.3390/rs13112171
CHEN C , HE C , HU C H , et al . A deep neural network based on an attention mechanism for SAR ship detection in multiscale and complex scenarios [J]. IEEE Access , 2019 , 7 : 104848 - 104863 . doi: 10.1109/access.2019.2930939 http://dx.doi.org/10.1109/access.2019.2930939
ZHANG X H , WANG H P , XU C A , et al . A lightweight feature optimizing network for ship detection in SAR image [J]. IEEE Access , 2019 , 7 : 141662 - 141678 . doi: 10.1109/access.2019.2943241 http://dx.doi.org/10.1109/access.2019.2943241
QU Z F , ZHU F Z , QI C X . Remote sensing image target detection: improvement of the YOLOv3 model with auxiliary networks [J]. Remote Sensing , 2021 , 13 ( 19 ): 3908 . doi: 10.3390/rs13193908 http://dx.doi.org/10.3390/rs13193908
CHENG G , LANG C B , WU M X , et al . Feature enhancement network for object detection in optical remote sensing images [J]. Journal of Remote Sensing , 2021 , 2021 : 9805389 . doi: 10.34133/2021/9805389 http://dx.doi.org/10.34133/2021/9805389
CHENG G , ZHOU P C , HAN J W . Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2016 , 54 ( 12 ): 7405 - 7415 . doi: 10.1109/tgrs.2016.2601622 http://dx.doi.org/10.1109/tgrs.2016.2601622
LI K , CHENG G , BU S H , et al . Rotation-insensitive and context-augmented object detection in remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 4 ): 2337 - 2348 . doi: 10.1109/tgrs.2017.2778300 http://dx.doi.org/10.1109/tgrs.2017.2778300
HONG Z H , YANG T , TONG X H , et al . Multi-scale ship detection from SAR and optical imagery via A more accurate YOLOv3 [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2021 , 14 : 6083 - 6101 . doi: 10.1109/jstars.2021.3087555 http://dx.doi.org/10.1109/jstars.2021.3087555
BODLA N , SINGH B , CHELLAPPA R , et al . Soft-NMS-improving object detection with one line of code [C]. 2017 IEEE International Conference on Computer Vision (ICCV). 22-29,2017 , Venice, Italy. IEEE , 2017 : 5562 - 5570 . doi: 10.1109/iccv.2017.593 http://dx.doi.org/10.1109/iccv.2017.593
YANG X , SUN H , FU K , et al . Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks [J]. Remote Sensing , 2018 , 10 ( 1 ): 132 . doi: 10.3390/rs10010132 http://dx.doi.org/10.3390/rs10010132
KOO J , SEO J , JEON S , et al . RBox-CNN: rotated bounding box based CNN for ship detection in remote sensing image [C]. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 6-9,2018 , Seattle, Washington. New York : ACM , 2018 : 420 - 423 . doi: 10.1145/3274895.3274915 http://dx.doi.org/10.1145/3274895.3274915
黎经元 . 不同分辨率可见光遥感图像的舰船目标检测识别方法研究 [D]. 杭州 : 浙江大学 , 2021 . doi: 10.1016/j.cja.2020.09.022 http://dx.doi.org/10.1016/j.cja.2020.09.022
LI J Y . Research on Detection and Recognition of Ship Targets from Visible Remote Sensing Images with Different Resolutions [D]. Hangzhou : Zhejiang University , 2021 . (in Chinese) . doi: 10.1016/j.cja.2020.09.022 http://dx.doi.org/10.1016/j.cja.2020.09.022
陈俊 . 基于R-YOLO的多源遥感图像海面目标融合检测算法研究 [D]. 武汉 : 华中科技大学 , 2019 .
CHEN J . Research on Fusion Detection Algorithm of Sea Surface Target in Multi - Source Remote Sensing Images based on R - YOLO [D]. Wuhan : Huazhong University of Science and Technology , 2019 . (in Chinese)
YANG X , YAN J C . Arbitrary - Oriented Object Detection with Circular Smooth Label [M]. Computer Vision-ECCV 2020 . Cham : Springer International Publishing , 2020 : 677 - 694 . doi: 10.1007/978-3-030-58598-3_40 http://dx.doi.org/10.1007/978-3-030-58598-3_40
SU N , HUANG Z B , YAN Y M , et al . Detect larger at once: large-area remote-sensing image arbitrary-oriented ship detection [J]. IEEE Geoscience and Remote Sensing Letters , 2022 , 19 : 1 - 5 . doi: 10.1109/lgrs.2022.3144485 http://dx.doi.org/10.1109/lgrs.2022.3144485
SUN Z Z , DAI M C , LENG X G , et al . An anchor-free detection method for ship targets in high-resolution SAR images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2021 , 14 : 7799 - 7816 . doi: 10.1109/jstars.2021.3099483 http://dx.doi.org/10.1109/jstars.2021.3099483
WANG X Y , CUI Z Y , CAO Z J , et al . Dense docked ship detection via spatial group-wise enhance attention in SAR images [C]. IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium . 26-2, 2020 , Waikoloa , HI, USA . IEEE , 2021 : 1244 - 1247 . doi: 10.1109/igarss39084.2020.9324162 http://dx.doi.org/10.1109/igarss39084.2020.9324162
CUI Z Y , LENG J X , LIU Y , et al . SKNet: detecting rotated ships as keypoints in optical remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing , 2021 , 59 ( 10 ): 8826 - 8840 . doi: 10.1109/tgrs.2021.3053311 http://dx.doi.org/10.1109/tgrs.2021.3053311
CHEN J J , XIE F Y , LU Y Y , et al . Finding arbitrary-oriented ships from remote sensing images using corner detection [J]. IEEE Geoscience and Remote Sensing Letters , 2020 , 17 ( 10 ): 1712 - 1716 . doi: 10.1109/lgrs.2019.2954199 http://dx.doi.org/10.1109/lgrs.2019.2954199
WEN R , LIU , . An enhanced CNN-enabled learning method for promoting ship detection in maritime surveillance system [J]. Ocean Engineering , 2021 , 235 : 109435 . doi: 10.1016/j.oceaneng.2021.109435 http://dx.doi.org/10.1016/j.oceaneng.2021.109435
WANG Z Q , ZHOU Y , WANG F T , et al . SDGH-net: ship detection in optical remote sensing images based on Gaussian heatmap regression [J]. Remote Sensing , 2021 , 13 ( 3 ): 499 . doi: 10.3390/rs13030499 http://dx.doi.org/10.3390/rs13030499
YOU Y N , LI Z Z , RAN B H , et al . Broad area target search system for ship detection via deep convolutional neural network [J]. Remote Sensing , 2019 , 11 ( 17 ): 1965 . doi: 10.3390/rs11171965 http://dx.doi.org/10.3390/rs11171965
SHIN H C , LEE K I , LEE C E . Data augmentation method of object detection for deep learning in maritime image [C]. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). 19-22,2020 , Busan, Korea (South). IEEE , 2020 : 463 - 466 . doi: 10.1109/bigcomp48618.2020.00-25 http://dx.doi.org/10.1109/bigcomp48618.2020.00-25
HU J Q , HE J Z , JIANG P , et al . SOMC: a object-level data augmentation for sea surface object detection [J]. Journal of Physics: Conference Series , 2022 , 2171 ( 1 ): 012033 . doi: 10.1088/1742-6596/2171/1/012033 http://dx.doi.org/10.1088/1742-6596/2171/1/012033
ZHIJUN , CHEN . Deep learning for autonomous ship-oriented small ship detection [J]. Safety Science , 2020 , 130 : 104812 . doi: 10.1016/j.ssci.2020.104812 http://dx.doi.org/10.1016/j.ssci.2020.104812
KONG T , YAO A B , CHEN Y R , et al . HyperNet: towards accurate region proposal generation and joint object detection [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 27-30,2016 , Las Vegas, NV, USA. IEEE , 2016 : 845 - 853 . doi: 10.1109/cvpr.2016.98 http://dx.doi.org/10.1109/cvpr.2016.98
WEI S H , CHEN H M , ZHU X J , et al . Ship detection in remote sensing image based on faster R-CNN with dilated convolution [C]. 2020 39th Chinese Control Conference (CCC). 27-29,2020 , Shenyang, China. IEEE , 2020 : 7148 - 7153 . doi: 10.23919/ccc50068.2020.9189467 http://dx.doi.org/10.23919/ccc50068.2020.9189467
ZHANG S M , WU R Z , XU K Y , et al . R-CNN-based ship detection from high resolution remote sensing imagery [J]. Remote Sensing , 2019 , 11 ( 6 ): 631 . doi: 10.3390/rs11060631 http://dx.doi.org/10.3390/rs11060631
LIU W C , MA L , CHEN H . Arbitrary-oriented ship detection framework in optical remote-sensing images [J]. IEEE Geoscience and Remote Sensing Letters , 2018 , 15 ( 6 ): 937 - 941 . doi: 10.1109/lgrs.2018.2813094 http://dx.doi.org/10.1109/lgrs.2018.2813094
CAO C Q , WU J , ZENG X D , et al . Research on airplane and ship detection of aerial remote sensing images based on convolutional neural network [J]. Sensors , 2020 , 20 ( 17 ): 4696 . doi: 10.3390/s20174696 http://dx.doi.org/10.3390/s20174696
王浩君 . 基于深度学习的光学遥感影像海上舰船目标检测研究 [D]. 杭州 : 杭州师范大学 , 2019 . doi: 10.1109/igarss.2019.8898759 http://dx.doi.org/10.1109/igarss.2019.8898759
WANG H J . Research on Ship Target Detection in Optical Remote Sensing Images Based on Deep Learning [D]. Hangzhou : Hangzhou Normal University , 2019 . (in Chinese) . doi: 10.1109/igarss.2019.8898759 http://dx.doi.org/10.1109/igarss.2019.8898759
韩子硕 , 王春平 , 付强 . 基于深层次特征增强网络的SAR图像舰船检测 [J]. 北京理工大学学报 , 2021 , 41 ( 9 ): 1006 - 1014 .
HAN Z SH , WANG CH P , FU Q . Ship detection in SAR images based on deep feature enhancement network [J]. Transactions of Beijing Institute of Technology , 2021 , 41 ( 9 ): 1006 - 1014 . (in Chinese)
CHEN L , SHI W , DENG D . Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images [J]. Remote Sensing , 2021 , 13 ( 4 ): 660 . doi: 10.3390/rs13040660 http://dx.doi.org/10.3390/rs13040660
NIE X , DUAN M Y , DING H X , et al . Attention mask R-CNN for ship detection and segmentation from remote sensing images [J]. IEEE Access , 2020 , 8 : 9325 - 9334 . doi: 10.1109/access.2020.2964540 http://dx.doi.org/10.1109/access.2020.2964540
HU J M , ZHI X Y , SHI T J , et al . PAG-YOLO: a portable attention-guided YOLO network for small ship detection [J]. Remote Sensing , 2021 , 13 ( 16 ): 3059 . doi: 10.3390/rs13163059 http://dx.doi.org/10.3390/rs13163059
DENG L , LI G Q , HAN S , et al . Model compression and hardware acceleration for neural networks: a comprehensive survey [J]. Proceedings of the IEEE , 2020 , 108 ( 4 ): 485 - 532 . doi: 10.1109/jproc.2020.2976475 http://dx.doi.org/10.1109/jproc.2020.2976475
LIU Z , LI J G , SHEN Z Q , et al . Learning efficient convolutional networks through network slimming [C]. 2017 IEEE International Conference on Computer Vision (ICCV). 22-29,2017 , Venice, Italy. IEEE , 2017 : 2755 - 2763 . doi: 10.1109/iccv.2017.298 http://dx.doi.org/10.1109/iccv.2017.298
GUO J Y , ZHANG W C , OUYANG W L , et al . Model compression using progressive channel pruning [J]. IEEE Transactions on Circuits and Systems for Video Technology , 2021 , 31 ( 3 ): 1114 - 1124 . doi: 10.1109/tcsvt.2020.2996231 http://dx.doi.org/10.1109/tcsvt.2020.2996231
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network [EB/OL]. 2015 : arXiv : 1503 . 02531 . https://arxiv.org/abs/1503.02531 https://arxiv.org/abs/1503.02531 . doi: 10.5860/choice.189890 http://dx.doi.org/10.5860/choice.189890
ROMERO A , BALLAS N , KAHOU S E , et al . FitNets: hints for thin deep nets [EB/OL]. 2014 : arXiv : 1412 . 6550 . https://arxiv.org/abs/1412.6550 https://arxiv.org/abs/1412.6550 "
WU J X , LENG C , WANG Y H , et al . Quantized convolutional neural networks for mobile devices [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 27-30,2016 , Las Vegas, NV, USA. IEEE , 2016 : 4820 - 4828 . doi: 10.1109/cvpr.2016.521 http://dx.doi.org/10.1109/cvpr.2016.521
XU Y H , DAI W R , QI Y Y , et al . Iterative deep neural network quantization with lipschitz constraint [J]. IEEE Transactions on Multimedia , 2020 , 22 ( 7 ): 1874 - 1888 . doi: 10.1109/tmm.2019.2949857 http://dx.doi.org/10.1109/tmm.2019.2949857
ZHANG F , LIU Y B , ZHOU Y S , et al . A lossless lightweight CNN design for SAR target recognition [J]. Remote Sensing Letters , 2020 , 11 ( 5 ): 485 - 494 . doi: 10.1080/2150704x.2020.1730472 http://dx.doi.org/10.1080/2150704x.2020.1730472
CHEN H Y , ZHANG F , TANG B , et al . Slim and efficient neural network design for resource-constrained SAR target recognition [J]. Remote Sensing , 2018 , 10 ( 10 ): 1618 . doi: 10.3390/rs10101618 http://dx.doi.org/10.3390/rs10101618
MA X J , JI K F , XIONG B L , et al . Light-YOLOv4: an edge-device oriented target detection method for remote sensing images [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2021 , 14 : 10808 - 10820 . doi: 10.1109/jstars.2021.3120009 http://dx.doi.org/10.1109/jstars.2021.3120009
陈科峻 , 张叶 . 基于YOLO-v3模型压缩的卫星图像船只实时检测 [J]. 液晶与显示 , 2020 , 35 ( 11 ): 1168 - 1176 . doi: 10.37188/yjyxs20203511.1168 http://dx.doi.org/10.37188/yjyxs20203511.1168
CHEN K J , ZHANG Y . Real-time ship detection in satellite images based on YOLO-v3 model compression [J]. Chinese Journal of Liquid Crystals and Displays , 2020 , 35 ( 11 ): 1168 - 1176 . (in Chinese) . doi: 10.37188/yjyxs20203511.1168 http://dx.doi.org/10.37188/yjyxs20203511.1168
LI Y D , ZHANG S S , WANG W Q . A lightweight faster R-CNN for ship detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters , 2022 , 19 : 1 - 5 . doi: 10.1109/lgrs.2020.3038901 http://dx.doi.org/10.1109/lgrs.2020.3038901
HUANG H , SUN D C , WANG R F , et al . Ship target detection based on improved YOLO network [J]. Mathematical Problems in Engineering , 2020 , 2020 : 1 - 10 . doi: 10.1155/2020/6402149 http://dx.doi.org/10.1155/2020/6402149
DING P , ZHANG Y , DENG W J , et al . A light and faster regional convolutional neural network for object detection in optical remote sensing images [J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2018 , 141 : 208 - 218 . doi: 10.1016/j.isprsjprs.2018.05.005 http://dx.doi.org/10.1016/j.isprsjprs.2018.05.005
ZHOU L , WEI S Y , CUI Z M , et al . Lira-YOLO: a lightweight model for ship detection in radar images [J]. Journal of Systems Engineering and Electronics , 2020 , 31 ( 5 ): 950 - 956 . doi: 10.23919/jsee.2020.000063 http://dx.doi.org/10.23919/jsee.2020.000063
ZHAO Y , YIN Y , GUI G . Lightweight deep learning based intelligent edge surveillance techniques [J]. IEEE Transactions on Cognitive Communications and Networking , 2020 , 6 ( 4 ): 1146 - 1154 . doi: 10.1109/tccn.2020.2999479 http://dx.doi.org/10.1109/tccn.2020.2999479
VOINOV S , HEYMANN F , BILL R , et al . Multiclass vessel detection from high resolution optical satellite images based on deep neural networks [C]. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium . 28-2,2019 , Yokohama , Japan . IEEE , 2019 : 166 - 169 . doi: 10.1109/igarss.2019.8900506 http://dx.doi.org/10.1109/igarss.2019.8900506
聂婷 . 大幅宽光学遥感图像目标检测技术研究 [D]. 长春 : 中国科学院长春光学精密机械与物理研究所 , 2019 .
NIE T . Research on Target Detection Technology of Large - Width Optical Remote Sensing Image [D]. Changchun : Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , 2019 . (in Chinese)
VAN ETTEN A . You only look twice: rapid multi-scale object detection in satellite imagery [EB/OL]. 2018 : arXiv : 1805 . 09512 . https://arxiv.org/abs/1805.09512 https://arxiv.org/abs/1805.09512 . doi: 10.1109/wacv.2019.00083 http://dx.doi.org/10.1109/wacv.2019.00083
XIA G S , BAI X , DING J , et al . DOTA: a large-scale dataset for object detection in aerial images [C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . 18-23, 2018 , Salt Lake City, UT, USA . IEEE , 2018 : 3974 - 3983 . doi: 10.1109/cvpr.2018.00418 http://dx.doi.org/10.1109/cvpr.2018.00418
LIU Z K , YUAN L , WENG L B , et al . A high resolution optical satellite image dataset for ship recognition and some new baselines [C]. Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. February 24 - 26 , 2017 . Porto, Portugal. SCITEPRESS-Science and Technology Publications , 2017 , 2 : 324 - 331 .
CHENG G , HAN J , ZHOU P , et al . Multi-class geospatial object detection and geographic image classification based on collection of part detectors [J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2014 , 98 : 119 - 132 . doi: 10.1016/j.isprsjprs.2014.10.002 http://dx.doi.org/10.1016/j.isprsjprs.2014.10.002
AIRBUS , Airbus Ship Detection Challenge . Kaggle [EB/OL]. ( 2018-07-30 ) [ 2022-08-30 ] https://www.kaggle.com/c/airbus-ship-detection https://www.kaggle.com/c/airbus-ship-detection .
GALLEGO A J , PERTUSA A , GIL P . Automatic ship classification from optical aerial images with convolutional neural networks [J]. Remote Sensing , 2018 , 10 ( 4 ): 511 . doi: 10.3390/rs10040511 http://dx.doi.org/10.3390/rs10040511
CHEN K , WU M , LIU J , et al . FGSD: a dataset for fine-grained ship detection in high resolution satellite images [EB/OL]. 2020 : arXiv : 2003 . 06832 . https://arxiv.org/abs/2003.06832 https://arxiv.org/abs/2003.06832 .
KE , LI . Object detection in optical remote sensing images: a survey and a new benchmark [J]. ISPRS Journal of Photogrammetry and Remote Sensing , 2020 , 159 : 296 - 307 . doi: 10.1016/j.isprsjprs.2019.11.023 http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
姚力波 , 张筱晗 , 吕亚飞 , 等 . FGSC-23: 面向深度学习精细识别的高分辨率光学遥感图像舰船目标数据集 [J]. 中国图象图形学报 , 2021 , 26 ( 10 ): 2337 - 2345 .
YAO L B , ZHANG X H , LÜ Y F , et al . FGSC-23: a large-scale dataset of high-resolution optical remote sensing image for deep learning-based fine-grained ship recognition [J]. Journal of Image and Graphics , 2021 , 26 ( 10 ): 2337 - 2345 . (in Chinese)
LI J W , QU C W , SHAO J Q . Ship detection in SAR images based on an improved faster R-CNN [C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). 13-14,2017 , Beijing, China. IEEE , 2017 : 1 - 6 . doi: 10.1109/bigsardata.2017.8124934 http://dx.doi.org/10.1109/bigsardata.2017.8124934
WANG Y Y , WANG C , ZHANG H , et al . A SAR dataset of ship detection for deep learning under complex backgrounds [J]. Remote Sensing , 2019 , 11 ( 7 ): 765 . doi: 10.3390/rs11070765 http://dx.doi.org/10.3390/rs11070765
孙显 , 王智睿 , 孙元睿 , 等 . AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集 [J]. 雷达学报 , 2019 , 8 ( 6 ): 852 - 862 .
SUN X , WANG ZH R , SUN Y R , et al . AIR-SARShip-1.0: high-resolution SAR ship detection dataset [J]. Journal of Radars , 2019 , 8 ( 6 ): 852 - 862 . (in Chinese)
WEI S J , ZENG X F , QU Q Z , et al . HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation [J]. IEEE Access , 2020 , 8 : 120234 - 120254 . doi: 10.1109/access.2020.3005861 http://dx.doi.org/10.1109/access.2020.3005861
PARK K A , PARK J J , JANG J C , et al . Multi-spectral ship detection using optical, hyperspectral, and microwave SAR remote sensing data in coastal regions [J]. Sustainability , 2018 , 10 ( 11 ): 4064 . doi: 10.3390/su10114064 http://dx.doi.org/10.3390/su10114064
李树涛 , 李聪妤 , 康旭东 . 多源遥感图像融合发展现状与未来展望 [J]. 遥感学报 , 2021 , 25 ( 1 ): 148 - 166 . doi: 10.11834/jrs.20210259 http://dx.doi.org/10.11834/jrs.20210259
LI SH T , LI C Y , KANG X D . Development status and future prospects of multi-source remote sensing image fusion [J]. Journal of Remote Sensing , 2021 , 25 ( 1 ): 148 - 166 . (in Chinese) . doi: 10.11834/jrs.20210259 http://dx.doi.org/10.11834/jrs.20210259
SHRIVASTAVA A , GUPTA A , GIRSHICK R . Training region-based object detectors with online hard example mining [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 27-30,2016 , Las Vegas, NV, USA. IEEE , 2016 : 761 - 769 . doi: 10.1109/cvpr.2016.89 http://dx.doi.org/10.1109/cvpr.2016.89
ZHOU Z H . A brief introduction to weakly supervised learning [J]. National Science Review , 2018 , 5 ( 1 ): 44 - 53 . doi: 10.1093/nsr/nwx106 http://dx.doi.org/10.1093/nsr/nwx106
YANG Y , PAN Z X , HU Y X , et al . PistonNet: object separating from background by attention for weakly supervised ship detection [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2022 , 15 : 5190 - 5202 . doi: 10.1109/jstars.2022.3184637 http://dx.doi.org/10.1109/jstars.2022.3184637
ELSKEN T , METZEN J H , HUTTER F . Neural Architecture Search [M]. Automated Machine Learning . Cham : Springer International Publishing , 2019 : 63 - 77 . doi: 10.1007/978-3-030-05318-5_3 http://dx.doi.org/10.1007/978-3-030-05318-5_3
WANG X , WANG G , DANG Q , et al . PP-YOLOE-R: an efficient anchor-free rotated object detector [EB/OL]. 2022 : arXiv : 2211 . 02386 . https://arxiv.org/abs/2211.02386 https://arxiv.org/abs/2211.02386 .
CARION N , MASSA F , SYNNAEVE G , et al . End - to - end object detection with transformers [M]. Computer Vision-ECCV 2020 . Cham : Springer International Publishing , 2020 : 213 - 229 . doi: 10.1007/978-3-030-58452-8_13 http://dx.doi.org/10.1007/978-3-030-58452-8_13
ZHANG Y N , ER M J , GAO W X , et al . High performance ship detection via transformer and feature distillation [C]. 2022 5th International Conference on Intelligent Autonomous Systems (ICoIAS). 23-25,2022 , Dalian, China. IEEE , 2022 : 31 - 36 . doi: 10.1109/icoias56028.2022.9931223 http://dx.doi.org/10.1109/icoias56028.2022.9931223
CHEN Y Y , XIA Z H , LIU J , et al . TSDet: end-to-end method with transformer for SAR ship detection [C]. 2022 International Joint Conference on Neural Networks (IJCNN). 18-23,2022 , Padua, Italy. IEEE , 2022 : 1 - 8 . doi: 10.1109/ijcnn55064.2022.9891879 http://dx.doi.org/10.1109/ijcnn55064.2022.9891879